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ABSTRACT

The Dutch Identity is a useful way to reexpress the basic equations of item

response theory (IRT) that relate the manifest probabilities to the item

response functions (IRFs) and the latent trait distribution. The identity may

be exploited in ssveral ways. For example: (a) to show how IRT models behave

for laIge numbers of items they are submodels of second-order log linear

models for g tables; (b) to suggest neu ways to assess the dimensionality of

IRT models -- factor analysis of matrices composed of second-order interactions

from log-linear models; (c) to give insight into the structure of latent class

models; and (d) to illuminate the problem of identifying the IRFs and the latent

trait distribution from sample data.



1

There are few mathematical tools that have proved useful in the study of

the structure of item response theory (IRT) models. This is especially true for

the so-called "marginal maximum likelihood" approach in which the distribution

of the latent variable is integrated out and the would-be analyser is left

facing an intractable integral that must be evaluated numerically (Bock and

Lieberman, 1970). While the EM algorithm (Bock and Aitken, 1981) can be u,ed to

simplify this integration, this fact is mainly useful in computing maximum like-

lihood estimates and does not lead to any insight into the structure of the

models themselves.

The purpose of this paper is to introduce a new tool that does, in some

cases, make the integrals disappear and allows the structure of the model to

appear in useful new ways. The remainder of this paper is organized as follows.

Section 1 sets up the notation; section 2 states and proves the new result

the Dutch Identity. Section 3 illustrates its value in several problems and

section 4 contains additional discussion.

1. NOTATION

The notation follows that in Holland (1981), Cressie and Holland (1983),

and Holland and Rosenbaum (1986). We let C denote a population of examinees and

T a specific test. The zero-one variable xj denotes correct or incorrect on

item j in T and the response vector, x, is given by:

x = (xi, ..., xj).

Let the proportion of examinees in the population, C, who would produce

response vector x when tested with T be denoted p(x). Clearly, we have

p(x) 0 and 1 p(x) = 1.
x



P:The 2 values, p():), are called the manifest probabilities. Let X be the

res?onse vsctor of a randomly selected examinee from C on test . The probabi-

lity function for X, Prob{X=x}, is just p(x), i.e.

ProblX=x1 = p(x).

Item response models restrict the form of the manifest probabilities, p(x), in

the following way. First of all, the value of a latent variable, 0, is assumed

to be associated with each examinee in C such that

a) given 8, the coordinates of X are independent, i.e.

P(X =xI0) = JI P(Xj=xj10), and
J

b) the item response functions, P(Xj=110) = Pj(0), are

usually restricted in some way, e.g., to be monotone

increasing in 0 or to have a specified functional form

such as the one-, two-, or three-parameter logistic

form (Birnbaum, 1968), and

c) the distribution function of 0 over C is denoted

by F(P).

Since xj is dichotomous, we may write

Qj(01-xi,

where Qj(0) = 1-Pj(0). The conditional independence assumption may then be

written as

P(X=x10) = II Pi(0)xj Qj(0)1-xi.
3 j

But, by the usual rules for manipulating conditional probabilities, we have

P(X=x) = f P(X=x10) dF(0),

and consequently all (locally independent) iLsm response models may be viewed as



restricting p(x) to have the form

P(x) = f II Pj(0)xj Qj(0)1-xj dF(0).
i

(1)

3

Equation (1) relates the manifest probabilities, {p(x) }, to the latent item

response functions, {7j(0)}, and the distribution of the latent variable, F(0).

In this paper, as in the discussion of the marginal maximum likelihood approach,

(1) is taken to be the defining characteristic of any IRT model. The integral

in (1) is the "intractable integral" referred to earlier and is often an

obstacle to the further understanding of IRT models.

The manifest probabilities, {p(x) }, are the governing quantities in the

likelihood function that arises when data are collected by randomly sampling N

examinees from C and testing them with T. In this situation let

n(x) = number of examinees in the sample producing

response vector x.

Then, if C is large compared to N, {n(x)} follows a multinomial distribution

with parameters N and {p(x) }. The likelihood function is the multinomial proba-

bility function (except for a multiplicative constant) and given by

II p(x)
n(x)

.

x

Thus the log-likelihood function is

L = E n(x) log p(x). (2)
x

Hence, it is natural to study the structure of log p(x), i.e., the "log-manifest

probabilities," and I shall do just that.

In this context, a model f'r p(x) is simply a restriction on the form of

p(x) in (2) and, in particular, IRT models are formed by equation (1) and

possible r'strictions on the {Pj(0)} and F(0).



Cressie and Holland (1983) studied the structure of the models defined by

(1) and were successful in completely characterizing p(x) in the case of the

Rasch model the case where the IRFs have the form specified by

P(0)log(,) a(0-bj).
Yjko)

(3)
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In (3), a = common discrimination parameter, and bj is the item difficulty

parameter. In this paper, I will generalize a formula obtained by Cressie and

Holland that re-expresses (1) in a us.lful way. This generalization is the Dutch

Identity.

2. THE DUTCH IDENTITY

Theorem 1 gives the basic result of this paper.

Theorem 1: (The Dutch Identity) If p(x) satisfies (1) then for any zero-one

vector y

= E(exp[(xj-yj)Xi}1X=Y)
P(Y) 3

where Xj = XI(0) is the item logit function,

(4)

Xj (0) = 1 (13.1(8)'- og
Qj(e)).

Before going through the easy proof of (4), let me make a few comments

about it. First of all, in (4), x is thought of as varying over all possible

response vectors while y is thought of as a fixed response vector. In a sense y

is an arbitrary choice of "origin." In using this identity we may choose y to

I discovered this identity and some of its consequences while lecturing in the
Netherlands during October, 1986. Since this discovery was in no small Fart
due to the stimulating psychometric atmosphere in Holland, I decided to call
the result the Dutch Identity.

I (i



have desirable properties. The right-hand-side of (4) is a conditional expec-

tation of a certain function that involves, X(0) = (X1(0), ..., XJ(0)), given

that X=y. More specifically, it is the posterior moment-generating-function of

X = X(0) given X=y, evaluated at the point, x-y.

Proof: We may express (1) as

SO

and

x.p(x) = 5 ((10)) J .11 Qj(0) dF(0)

= J exp[(xj Xj(0)] H Q;(0) dF(0)

= J exp[(x;-yj) Xj(101)) 17,12.122 Y'

J j

ku j JpQj(0)) J Qj(0) dF(0)

p(x) = f exp[E(xj-yj) Xj(0)] II Pj(0)37j Qi(0)1Yi dF(0)

H P;(0)Yj Q;(0)
1y

J

212 expfJ
j

(xi-yj) Xj(0)][j
P(Y)

dF
P(Y)

(0)]

However, the quantity in brackets is the posterior distributirm function of 8

given X=y, i,e.,

Thus

H P(0)37j (0)1-Yj dF(9)
J

P(
dF(01X=y)

P.11
J
1J Xf exi*E0c.) .0)] dF(01X=y)

17:(Y)

= E(exp[(xj-yj)XillX=Y) QED.

1I

5
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This proof follows the type of argument used by Cressie (1982) to prove a

similar type of identity that is useful in empirical Bayes applications. To my

knowledge, the Dutch Identity has never been used in the analysis of IRT models,

although Cressie and Holland (1983) derived the special case of (4) in which

y=0. Finally, it should be mentioned that in (4) the fact that 8 is a scalar is

not used and in fact 8 might be a vector, O.

3. SOME APPLICATIONS OF THE DUTCH IDENTITY

3.1 An IRT Model That Is A Second-order Log-linear Model

An IRT model for p(x) involves an integral, but log-linear models for p(x)

are much simpler and merely state that log p(x) is linear in some parameters,

i.e.

log p(x) = a + b(x) A (5)

where A is a (column) vector of free parameters of length K, b(x) is a (row)

vector of K known constants, and a is the normalizing constant that insures that

the p(x) sum to 1. Log-linear models for p(x) correspond to log-linear models

for 2J-contingency tables. These are widely used (e.g., Bishop, Fienberg, and

Holland, 1975). Some examples ere as follows Throughout the rest of this

paper, t denotes vector or matrix transpose.

a) Independence. The coordinates of X = (X1,...,Xj) are independent if and

only if

log p(x) = a + y 0.x'. (6)

In this case b(x) = (x1,...,xj) and, At =

b) Generalized Rasch Model. In Cressie and Holland (1983) the following model

is discussed in detail

log p(x) = a + y six; + 7 7k 45(k,x+). (7)

j k



1 if xi. = k

where 6(k,x+) = and xi. = E xj.

0 otherwise,

b(x) = (x1,...,xj, 6(1,-4), 6(J,x+))

and At = (A1,...,AJ, 11,.,/j) then (7) defines the class

of extended Rasch models. If the {10 are restricted by the inequrlities

indicated by Cressie and Holland (1983), then (7) defines the class of

Rasch models.

c) Second-order Exponential Models. Tsao (1967) defines a second-order

exponential (SOE) model by

log p(x) = a + six; + I 'Yrs xrxs (8)

j r<s

In this case b(x) = (x1,...,xj, xix2,x1x3,...,xj_1xj),

3

and At = (A1,...,Ai, 112, 113,...,1J-1,J).

An interesting question is whether or not an IRT model satisfying (1) can

ever be equivalent to a SOE model. This section shows that from the Dutch

Identity one may construct an IRT model that is a submodel of the class of SOE

models. The next section shows that this construction is far more general than

it might first appear. I will state the results as a corollary to Theorem 1 in

which 0 is a column vector.

Corollary 1: if, foi some choice of y, the posterior distribution of 01X=y is

normal, i.e.

F(01X=y) is ND(py,

and if the item logit functions aj(0) are linear, i.e.

Xj(0) = Xj(py) + aj(0-py)

where aj = (alj,...,apj) and D is the dimensionality of 0 then

log p(x) = a + (x-y)t A(py) + f(x-y)t A 4 At(x_y) (9)

7



where At = (at,...,ap, and a = log p(y).

I first prove this result using Theorem 1 and then I will comment on it.

Proof: From (4) we have

log p(x) = a + log E(e(x-Y)tl I X=y), (10)

where a = log p(y). But by assumption OIX=y is N(py, 4), and since X(D) is a

linear function of 0, the posterior distribution of A is also multivariate nor-

mal. Hence, we hie

E(XIX=y) = X(py)

and

8

Cov(XIX=y) = A 4 At.

Now remember that the expected value in (10) is the moment generating function

(mgf) of A evaluated at (x-y). However, the mgf of a normal variable Z with

mean p and covariance X evaluated at s is

E[explstZl] = exp {st p + 1 st X s }. (12)

Applying (12) to (11) and (10) with s = x-y and taking logs yields (9). QED.

To see that (9) is, in fact, of the form (8), expand the terms in (9) and

collect them to form

log p(x) = la + 1 Yt B Y Yt X(P),)} + xt{X(Py) B Y} + 1 xt B x, (13)

where B = A Xy At. Now suppose B = F + Db where F has a zero diagonal, b is the

diagonal of 1, and Db is the diagonal matrix based on b. Thus (9) is equivalent

to

log p(x) = [a + I yt B y ..' yt )t(Py)} + Xt[X(py) B y + b} + I Xt
I'
x, (14)

2
since xi = xi.

If we now make the substitution

a- = a+ 1 yt g ... yt X(py)

I1
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K = X(Ily) B y + b,

we see that (9) is equivalent to

log p(x) = a' + xt 0 + i xt I' x, (15)

which is just a matrix way of expressing (8).

The fact that an IRT model c-an exist that is a non-trivial example of a SOE

model (i.e., is not independent) is quite interesting in its own right. Lord

(1962) showed that second-order linear (as opposed to log-linear) models do not

give reasonable score distributions in general. This would not be true of the

model specified in (9) or (15).

3.2 IRT Models With Large Numbers of Items

It might be thought that the example given in Corollary 1 is unusual but

the purpose of this section is to show that it holds aE a limiting form for all

"smooth" unidimensional IRT models.

When the number of items, J, is large, 0 is a scalar, F has a density, and

y is a "typical" response vector, then the posterior distribution of 9 given X=y

is approximately normal, i.e.

dF(01X=y) = 1 0(2.11-1-I) d0, (16)
ay ay

where 0(x) is the unit normal density function. Furthermore if the item logit

functions, Xj(0), are differentiable they have the expansion

Xj(0) = Xj(Py) + (e) (0-11y) + 000-113,1). (17)

Finally, if ay is small, as it will be for large enough J, the higher order

terms in (17) can be ignored and we have A approximately multivariate normal

with mean vector, X(py), and covariance matrix, (TO ay(To)
t

a JxJ matrix of

1Ll
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rank 1. Hence, because of Corollary 1, in this situation the following equation

will hold approximately (as J .0) for any unidimensional IRT model for which the

IRPs are smooth, and F is continuous:

log p(x) = a + (x-y)t X(py) + a; (x_y)t (.21)(11)t (x -y).
80 80

(18)

Equation (18) defines a submodel of the class of SOE models in (8) in which the

second-order parameters are restricted to a multiplicative form. In terms of

the free parameters that can be independently estimated, (18) is of the

following log-quadratic form:

log p(x) = a (xt 0) + (xt 1)2. (19)

Equation (19) does not define a log-linear model but rather a submodel of the

class of SOE models that has only 2J-parameters rather than the full set of

J + () parameters of the general SOE model.
2

The derivation of (18) depends only on the fact that (a) 0 is one-

dimensional, (b) F is continuous, (c) J is large, (d) y is chosen so that

F(01X=y) is approximately normal with a small variance 4, and (e) Xj(0) is dif-

farentiable. Since all models in use usually assume (a), (b), and (e) and

since the existence of y satisfying (d) is well-known among users of BILOG (see,

for example, Bock and Mislevy, 1982), the representation of p(x) as a model of

the form (18) is a very general result. The only issue is how large J needs to

be for it to hold. This is a worthy topic for future research.

One implication of (18) is that there can be at most two parameters per

item consistently estimated for long tests. This is in accord with the general

fact that it is difficult to estimate three or more item parameters in an

unrestricted fashion for data sets that involve many examinees and many items,

I 6
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even though IRFs are often parameterized with more than two parameters.

3.3 The Study of Test Dimensionality

If 0 is a vector parameter, 0, and has an approximate normal posterior

distribution F(01X=y) for some y, with mean py and covariance matrix Ey then the

generalization of (18) is

Letting

we have

log p(x) = a + (x-y)tX(py) + i(x-y)t(41)1) Iy(lt-)t(x-y) (20)

A. = XJ.:. ) and R = (
21

)
,

(

v(i
)
t

J AIY 80

log p(x) = a + (x-Y)t 0 + i(x-Y)t R(x -y). (21)

Equation (21) says that p(x) satisfies an SOE model in which the matrix of

second-order interactions is proportional to R. However, the rank of R is the

rank of Ey which is the same as the dimensionality of the latent variable 0.

Hence, equation (21) suggests that a way to factor-analyze dichotomous items is

to fit a SOE model to the 2-7 table, En(x)1, and then to factor-analyze the

matrix of second-order interactions, R. This method will be especially

appropriate when there are large numbers of items. It does not make any assump-

tion other than those made in section 3.2.

The matrix of second-order interactions in a SOE (or log-linear) model is

only a triangular array with no meaningful diagonal. Hence "factor analysis" of

such data is not easily interpretable in terms of covariance matrices and linear

regressions of items on factor scores. Instead, all I mean by factor analysis

is the decomposition of the elements 7r, in (3) into the following terms

i(1)
(1)t (2) (2)t (D) (D)t

/rs = / /s + /I. /s + ... /I. is for 15r<s5J, and D<<J. (22)

1 2
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The vectors 7
(k)

- (7
1

(k)

'

..., 7
J

k)
)
t

must also satisfy orthogonality

constraints. The lengths of these vectors must also decrease,

117(1)11 11/(2)11

In a more general vein, I am tempted to propose that a test measures D

dimensions in population C if representation (1) holds for its manifest probabi-

lities in population C with 0 = (81,...,80 and if there is a response vector y

such that F(01X=y) is more concentrated about its center in every direction

than F(0) is. If F(0) and F(OIX =y) both possess covariance matrices, E and Ey,

then this condition could be expressed as

E Xy > 0 (23)

in the sense that this difference can be positive definite. This proposal is

based on the idea that if the test really measures all of the coordinates of 0

then, for at least one response vector, y, our knowledge of 0 ought to be more

precise in every 8-direction if the response y is observed than if the test is

not given, in which case all that is available is the unconditional distribution

of 0.

3.4 Latent Class Models

The simplest latent class model has just two latent classes, which we can

label by two real numbers 81 and 82. Then equation (1) reduces to

F,;(0i)xj moi)ixilpi

1 3 '

(24)

where pl + p2 = 1 are the proportions of examinees in C with 81 and 82, respec-

tively.

This latent class model violates the assumption that F is continuous in the

strongest possible way, i.e., F is a two-point distribution. However, the Dutch

Identity, (4), is still valid for this case. The posterior distribution F(8 ix=Y)



is also a two-point distribution concentrated en 01 and 02 with

P1(Y) = P(0=011X=y)

P2(Y) = P(8421x=Y).and

Hence the moment generating function in (4) is given by

E(exp[I(xj-y9Xj}IX=y) = pi(y) exp{I(xj-yj)Xj1} + p2(y) exp{I(xj-yj)Xj2}

3 3 i

where Xji = X(01), Xj2 = X(02). Applying the Dutch Identity yields

21)2M
P9(Y)

P1(Y)
exp[2(xj-yj)Xj11 [1 + exp[I(xj-yj)(Xj2-Xj1)}1.

Let 15j = Xj2 Xji and Aj = Xj1, then taking logs we have

log p(x) = a + (xj-y.Aj
J

/ + 2(x.-y.).
+ log(1 + e j .7 .7

(5

.7) (25)

13

:were a = log(p(y)pi(y)) and / = log(p2(y)/p1(y))

Let LP(x) be the "logistic potential" function, i.e.

LP(x) = log(1 + ex).

(Note that the derivative of LP(x) is the logistic function, hence the name

"logistic potential.")

We may express (25) as

log p(x) = a + (x-y)t0 + LP(/ + (x-J)4). (26)

Thus, the Dutch Identity reveals that the two-class latent class model for

dichotomous data is a log-nonlinear model of a very special form, (26).

Different choices of y can affect a and / in (26) but not and (5j. This

representation of the two-point latent class model may yield alternative ways of

fitting such models, and approximations to LP(X) may also prove useful.

I J
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3.5 What Does An Observed Response Vector Tell Us About The Value Of A Latent
Variable?

The estimation of 0 in IRT models is problematic. The LOGIST program,

Wingersky (1983), produces "maximum likelihood" estimates of 0, 0, while the

approach used in BILOG, Mislevy and Bock (1982), produces posterior expectations

of 0 given each possible response vector, y, i.e., E(01X=y). However, in my

opinion, it has always been a mystery as to exactly what these quantities really

mean since

a) the scale of 0 is arbitrary,

b) for some choices of F, E(01X=y) will not exist,

c) the "likelihood function" used in LOGIST to compute

0's is not the real likelihood function for many

applications e.g., when examinees are sampled from

a well-defined population the likelihood function in

(2) is the correct one.

The Dutch Identity provides a key to rnderstanding this mystery. The

equation

P(x) E(e(x-Y)txix=y)
P(Y)

may be re-expressed in the following way. Let r = x-y and let

(27)

Sy = ir : y+r = x = a 0/1 vector).

Thus Sy is the set of all (0,1,-1)-vectors r such that when added to y we

get a (0,1)-vector, x, back. Clearly, Sy depends on y. Now (4) can be written

as

r

E(e
tx

(x=y)

= P(Y+r)
P(Y)

2o

all rcSr (28)
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Hence (28) says that for each fixed value of y, the moment generating func-

tion for the conditional distribution of A given that X=y evaluated at each reSy

equals the ratio p(y+r)/p(y). Since the manifest probabilities are, in prin-

ciple, the most that the data can ever determine, equation (28) implies that for

rtA,
each y, the values of E(e 1Xy) for reSy are the most that we can know about

0. Suppose we let

then (28) says that

rtx
gr(A) = e , (29)

E(gr(A)IX=y) P(Y+r)
P(Y) (30)

for all reSy. Thus, (30) is an example of the so-called generalized moment

problem. We are interested in the conditional distribution of A given X=y.

Equation (30) says that all we can know, in principle, are the values of the

expectation of gr(A) for all reSy for this conditional distribution. Kemperman

(1968) shows how knowledge of these generalized moments can be used to infer

knowledge of the conditional distribution of A given X=y. These inferences con-

sist of bounds on probabilities of the form

Ly(S) 5 P(/eSIX=y) 5 Uy(S), (31)

where S is a set of A-values.

Hence the mystery of what can be "estimated" about 0 is resolved into

bounds on probabilities of events that involve A(0) rather than 0. The tools

developed by Kemperman (1968) and others can be used to investigate these issues

further. The central role of 1(0) in (30) suggests that model building ought to

be in terms of Xj(0) rather than Pj(0).
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3.6 The Rasch Model

The Rasch model has a one-parameter logistic item response function which

implies that the logit function, Xj(0), has the following linear form:

Xj(0) = a(0 ..j). (32)

In addition, the ability distribution, F(0), is unspecified in the Rasch model.

In Cressie and Holland (1983) it is shown that for the Rasch model the manifest

probabilities, {p(x) }, have the following log-linear form:

log p(x) = a + 1 xi 13i + 1 /k 6(x+, k) (33)
jJ J k

where x+ = 1 xj and

11 if x+ = k

6(x+, k) =
Lo -otherwise.

The parameters {0.0 are unconstrained and each Oj may vary over (-a., a.). The

{7k} are the logarithms of a moment sequence, i.e.

7k = log[E(Uk)],

for an arbitrary positive random variable U. Thus, the /k are subject to a

system of inequalities described in detail in Cressie and Holland (1983) and in

de Leeuw and Verhelst (1986).

The main tool used by Cressie and Holland to establish (33) is a form of

the Dutch Identity with y=0. We may obtain an alternativr. formulation of (33)

using the general Dutch Identity. This is given in Theorem 2.

Theorem 2: If p(x) satisfies an IRT model with one-parameter logistic IRFs

(:.e., (32)) and general F, then p(x) satisfies the log-linear model

log p(x) = a + 1(xj-yi)0j + /k 6(x+, k), (34)

J

where the Oj vary over (-co, co) and the /k have the form

/k = log[(E(UkY+)]

2,c



for k = 0, 1, J , and U is an arbitrary positive random variable.

Proof: From the Dutch Identity we have

p(x) = p(y) E[expl(xj-ypa(0-bj)11X=y]

= p(y) expl(-abj)(xj-yj)1 E[expla0(x+-Y+)11X=y]

Now let U = e
a0

and take logs. This yields

log p(x) = a + 1..(xj-yj)0j + log E[Ux+-57+IX=y]

where

a = log p(y), and Oj = -abj.

Then set

17

7k = log E[UkY+IX=y]. QED.

Cressie and Holland show that the total number of nonredundant parameters

in (33) is 2J-1 there a J O's and J-1 7's. However, the 7's are not freely

varying parameters and are subject to a system of inequalities. While these

inequalities do not restrict the 7's in a functional way, they do have an

interesting impact on the values that the 7's can take on as the next corollary

shows.

Corollary 2: If p(x) satisfies the hypothesis of Theorem 2 and if y is such

that F(01X=y) is N(py, ay) then

7k = a py(k-y+) + i(a ay)
2
(k-y+)

2
(35)

so that the 7k lie on a quadratic curve as a function of k.

Proof: Simply evaluate Elea
0(x +-57+)1X=y]

from the proof of Theorem 2 using the

moment generating function of an univariate normal distribution. QED.

We observe that the existence of a y for which 0IX=y has a nearly normal

distribution follows from the assumption that J is large and F(0) is smooth.
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Hence, rather than 23-1 parameters, when J is large, the Rasch model can be

expected to behave as though there were only J+1 parameters -- J O's and one I

(the coefficient of (x+-57.1.)
2
).

4. DISCUSSION

In my opinion, the Dutch Identity has been shown to be a useful tool for

the analysis of IRT models. The very fact it implies that long tests must

exhibit very little third and higher-order interactions in their manifest proba-

bilities, {p(x)}, is remarkable and not well-known. I have begun Monte Carlo

simulation work to investigate how large J must be it order for SOE models to

fit data generated by a model of the form (1). For ten items with Rasch IRFs

the fit based on 30,000 simulates: examinees is quite good likelihood ratio

chi-squares of 965 on 968 degrees of freedom. For non-Rasch IRF (either linear

logit functions with different slopes or 3PL IRFs) the fit on ten items is not

as good. These results are in agreement with the theory in this paper, but

there is clearly more work to he done.

A second remarkable fact that the Dutch Identity implies concerns the

number of parameters that can be estimated in a long test. The discussion in

section 3.2 shows that all "smooth" unidimensional IRT models converge to a

model of the form (19) as the number of items grows. The model in (19) has only

two parameters per item which may be interpreted as the value of and of its

first 0-derivative at a single point. Hence models that attempt to fit three or

more parameters per item can only do so successfully for two reasons; either (1)

they are not applied to a large enough item set or (2) the test is not unidimen-

sional. What I conjecture from this analysis is that there is a sort of

"conservation law" for IRT item parameters of the form: a D-dimensional set of

J items can only support a tytal of (D+1)J parameters when J is large.

2
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Individual items may be able to have more than D+1 parameters estimated for

them, but only at the expense of fewer estimable parameters for some other

items. The total cannot exceed (D+1)J. It will be very useful to see how this

type of result actually works on real and simulated data.
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